Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6425 -
Telegram Group & Telegram Channel
📋 Чек-лист перед запуском ML-задачи через `sbatch`

Ваш минимальный набор проверок, чтобы не тратить GPU впустую и не ловить баги на 3-й час обучения:

Подготовка скрипта run_job.sh:
➡️ Указано имя задачи через #SBATCH --job-name=...

➡️ Настроены логи: --output=logs/%x_%j.out, --error=logs/%x_%j.err

➡️ Выбран нужный раздел: --partition=ml (или подходящий)

➡️ Указано количество ресурсов: --cpus-per-task=..., --mem=..., --gres=gpu:1

➡️ Прописан тайм-аут: --time=HH:MM:SS — не забудьте!

Среда и окружение:
➡️ Загружается нужный модуль (module load ...) или активируется conda

➡️ Все зависимости перечислены в requirements.txt или environment.yaml

➡️ Проверен путь к train.py и конфигам — абсолютный или относительный

Код:
➡️ Прописан фиксированный random seed (в reproducibility мы верим)

➡️ Есть логирование (хотя бы print/logging/wandb/MLflow)

➡️ Код протестирован локально или через srun с малым объемом данных

Безопасность и этика:
➡️ Нет утечки чувствительных данных

➡️ Модель прошла базовую проверку на адекватность и непредвзятость

Финальное:
➡️ Скрипт запускается через: sbatch run_job.sh

➡️ Вы проверяете статус: squeue -u $USER

➡️ При ошибке используете: scancel <jobid>

Если всё отмечено — можно запускать!

🙅‍♂️ Если хотя бы одно «нет» — лучше потратить ещё 5 минут, чем 5 часов GPU-времени впустую.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6425
Create:
Last Update:

📋 Чек-лист перед запуском ML-задачи через `sbatch`

Ваш минимальный набор проверок, чтобы не тратить GPU впустую и не ловить баги на 3-й час обучения:

Подготовка скрипта run_job.sh:
➡️ Указано имя задачи через #SBATCH --job-name=...

➡️ Настроены логи: --output=logs/%x_%j.out, --error=logs/%x_%j.err

➡️ Выбран нужный раздел: --partition=ml (или подходящий)

➡️ Указано количество ресурсов: --cpus-per-task=..., --mem=..., --gres=gpu:1

➡️ Прописан тайм-аут: --time=HH:MM:SS — не забудьте!

Среда и окружение:
➡️ Загружается нужный модуль (module load ...) или активируется conda

➡️ Все зависимости перечислены в requirements.txt или environment.yaml

➡️ Проверен путь к train.py и конфигам — абсолютный или относительный

Код:
➡️ Прописан фиксированный random seed (в reproducibility мы верим)

➡️ Есть логирование (хотя бы print/logging/wandb/MLflow)

➡️ Код протестирован локально или через srun с малым объемом данных

Безопасность и этика:
➡️ Нет утечки чувствительных данных

➡️ Модель прошла базовую проверку на адекватность и непредвзятость

Финальное:
➡️ Скрипт запускается через: sbatch run_job.sh

➡️ Вы проверяете статус: squeue -u $USER

➡️ При ошибке используете: scancel <jobid>

Если всё отмечено — можно запускать!

🙅‍♂️ Если хотя бы одно «нет» — лучше потратить ещё 5 минут, чем 5 часов GPU-времени впустую.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6425

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ru


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA